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Abstract
Decomposers provide an essential ecosystem service that contributes to sustainable pro-

duction in rice ecosystems by driving the release of nutrients from organic crop residues.

During a single rice crop cycle we examined the effects of four different crop residue man-

agement practices (rice straw or ash of burned straw scattered on the soil surface or incor-

porated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-

dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that

either prevented or allowed access of meso- and macro-invertebrates was used as a proxy

for decomposition rates. Invertebrates significantly increased total loss of litter mass by up

to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller

in plots with rice straw scattered on the soil surface; however, this effect disappeared later

in the season. We found no significant responses in microbial decomposition rates to man-

agement practices. The abundance of aquatic fauna was higher in fields with rice straw

amendment, whereas the abundance of soil fauna fluctuated considerably. There was a

clear separation between the overall invertebrate community structure in response to the

ash and straw treatments. However, we found no correlation between litter mass loss and

abundances of various lineages of invertebrates. Our results indicate that invertebrates can

contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their

abundance as well as efficiency in decomposition may be promoted by crop residue man-

agement practices.
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Introduction
Establishing sustainable agricultural practices together with the restoration of functional food
webs for integrated pest management and nutrient cycling has become a major focus of current
rice research. Decomposition in general, and decomposition of rice straw in particular, is an
important process regulating energy flows and nutrient cycles in rice paddies [1–3]. Therefore,
the establishment of a functional decomposer community is essential in the development of
practices for sustainable agricultural management in rice dominated landscapes [4]. However,
to date, decomposition dynamics (e.g. interactions between microbes and invertebrates) as well
as detritivore community assembly in flooded rice ecosystems have received little research
attention. The present study examines the effects of different crop residue management prac-
tices on invertebrate communities and decomposition rate in tropical rice fields.

Rice straw decomposition by invertebrate decomposers is likely to be of particular impor-
tance to the stable and adequate availability of nutrients and to sustained soil quality in rice
fields, because under the anaerobic conditions created by flooding microbial decomposition
rates are expected to be low [5–10]. Therefore, major component of our study was to evaluate
the contribution of invertebrates to litter decomposition in tropical irrigated rice fields. How-
ever, the complex relationship between soil biodiversity and ecosystem function is poorly
understood [8, 11–14]. The effects of soil invertebrates on litter decomposition are often rather
indirect; nevertheless, the activity of soil invertebrates is an essential determinant of decompo-
sition rates and nutrient release [10, 15–17]. For example, litter fragmentation by invertebrates
enhances microbial decomposition by increasing the surface area of plant fragments which cre-
ates a more stable and favorable micro-environment for decomposer microbes [1, 18].

The activity of invertebrate and microbial decomposers depends primarily on moisture and
temperature [18–22], but also depends on the quality of the litter, e.g. lignin concentrations [23]
and C/N ratios [3, 15]. Decomposers generally prefer high quality substrates with low C/N ratios,
which results in faster decay rates [9, 24, 25]. Rice straw residues have high C/N ratios (approx.
61, see S1 Fig) compared to litter from other herbaceous plants (e.g. ranging from 19 to 30; see
[26]); nevertheless, rice straw represents an important carbon and nitrogen source in rice paddies
[20, 27]. Crop residues are often burned by farmers for cost-effectiveness or for the lack of alter-
native technology to incorporate large amounts of residues into the soil [18, 28, 29]. This results
in a loss of both C and N [20]. Recently, an awareness of the importance of rice straw for nutrient
supply has led to increasing efforts to improve strategies of crop residue management [18, 30].
Several studies have indicated that rice straw increases the content of mineralized N in the soil
[31–33] and can improve crop yields (e.g. [34]). Therefore, the incorporation of rice straw resi-
dues into the paddy soil can further reduce N losses and enhance N availability for plants [35].

Rice fields provide habitat for a bewildering variety of soil-dwelling and freshwater animals
[36, 37]. The most abundant groups of invertebrates involved in decomposition in flooded rice
fields are oligochaetes, like Enchytraeidae or Tubificidae, chironomid larvae, nematodes and
microcrustaceans. As an essential driver regulating nutrient cycling processes [1, 38] these
organisms may increase paddy soil fertility [39]. In contrast, soil-dwelling microarthropods,
like Acari or Collembola, occur in comparatively low numbers and are therefore thought to
have limited influence on decomposition processes in irrigated rice [38, 40, 41].

Under aquatic conditions, litter initially decomposes at a fast rate due to leaching of water
soluble substances [1]. It has been repeatedly demonstrated for flooded rice fields that after this
initial rapid phase with large reductions in litter biomass, decomposition rates eventually slow
down as soluble components become exhausted [14]. Deceleration of decomposition in tropi-
cal aquatic systems may also be due to a gradual decrease in fungal biomass over time [9],
which makes the litter less attractive for decomposer organisms, especially grazers.
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The results of previous studies that examined the effects of crop residue management on
faunal diversity and abundance have been generally inconsistent. There is general agreement
that management practices in flooded paddy fields do not affect the species richness of the
aquatic and soil fauna [42, 43], but do affect relative abundance and, therefore, the composition
of these species assemblages. Friebe and Henke [44] indicated that greater tillage intensity was
associated with significantly lower abundances of soil fauna, which also decreased rates of
straw decomposition. In contrast, Singh et al. [18] presented evidence of a positive effect of the
incorporation of crop residues into soil on populations of all groups of macro- and microor-
ganisms. Therefore, in the present study, we examine how management practices influence
the composition and abundance of different functional groups of aquatic and soil fauna and
whether this fauna contributes to straw decomposition in tropical flooded rice fields. For this,
we investigated common practices of residue management that differed in the materials applied
(ash vs. straw) and the mode of application (scattering on the surface vs. incorporating in the
soil).

We tested the following hypotheses:
(1) Invertebrates contribute significantly to the mass loss of rice straw in paddy fields, with

(2) the abundances of invertebrates being higher in rice fields with straw amendment com-
pared to ash treatment. (3) This effect depends on the mode of residue application since scat-
tering residues on the surface might favor different groups of invertebrates (henceforth
lineages) from those favored when the material is incorporated into the soil. (4) Abundances of
functional groups of invertebrates and their relative contribution to decomposition will vary
over time with stronger effects of invertebrates and faster decomposition rates at the beginning
of the season.

Materials and Methods

Study site
As part of the LEGATO project [45] our decomposition experiment was conducted at the field
research station of the Philippine Rice Research Institute (PhilRice) in Muñoz, Nueva Ecija
province on the island of Luzon, Philippines (elevation: 50 m above sea level; latitude 15.67,
longitude 120.89 WGS84 decimal degrees; LEGATO region: PH_2, [46]). The soil in this area
is of volcanic origin with a high proportion of clay and loam. In this region, lowland flooded
rice is mostly cultivated in two crop cycles per year, one in the dry season (January—April) and
one in the wet season (June—September). Our study was carried out during the dry season of
2013. During the experiments, the average temperature was between 25.8°C and 29.6°C, and
the monthly rainfall varied between 0 and 2 mm (weather data provided by PhilRice—Central
Experiment Station). The experimental site had previously been used for wet-rice cultivation
for about 50 years. As the experiment was conducted at the field research station of the Insti-
tute, the rice fields of our study were not “true” farmers' fields, but were created just for this
experiment. The experiment was carried out with the permission of and in cooperation with
researchers of PhilRice. Our study did not involve any endangered or protected species.

Study design
The experiment was arranged as a randomized complete block design with five blocks, each
with five plots, and arranged in a 5 × 5 grid (S2 Fig). Each plot had a surface area of 25 m2.
Four crop residue management treatments were applied randomly to the plots within each of
the five blocks four days prior to planting the rice seedlings. Treatments included: ash of
burned rice straw scattered on the field (henceforth abbreviated by ‘Asc’), ash of burned rice
straw mixed in the soil (‘Ami’), rice straw scattered on the field (‘Ssc’) and rice straw mixed in

Effects of Crop Residue Management on Decomposition in Rice Fields

PLOS ONE | DOI:10.1371/journal.pone.0134402 July 30, 2015 3 / 19



the soil (‘Smi’). In the control plots (‘Ctr’), no ash or straw was added. For each treatment 10
tons ha-1 of rice straw were either burned or pre-decomposed (scattered in the field for 8 weeks
during the fallow period and then put into sacks at the green house where it was sprinkled with
water once a day for another 3 weeks) to simulate field conditions before application to the
experimental plots.

Rice seed (Oryza sativa L., variety NSIC Rc 222) was sown in dry seedbeds until the seed-
lings were 27 days old at which time they were transplanted to the plots. The rice crop was
managed according to local farmers’ practices, including mechanical plowing of dry soil one
month before transplanting the rice seedlings (after ca. 8 weeks fallow period), flooding and
harrowing of the field two weeks before transplanting (from then on the field was kept flooded
until harvesting), and leveling of the soil surface five days before transplanting. Molluscicides
(‘Bayluscide’—active ingredient Niclosamide) and herbicides (‘Machete’—active ingredient
Buthachlor) were applied shortly after transplanting. Fertilizer (‘Swire’ 14-14-14 with urea 46-
0-0) was applied two times (7 and 30 days after transplanting) and no insecticides were applied
during the experiment. The rice plants were harvested 82 days after transplanting.

Litterbags. In order to quantify the contribution by invertebrate decomposers to total
rates of decomposition we used nylon litterbags of 15 cm × 20 cm with two different mesh sizes
[47] that were filled with 10 g of air-dried, chopped rice straw (Oryza sativa L., variety NSIC Rc
222) and fixed to the ground by coarse nylon nets and bamboo sticks. Subsamples of the straw
were retained for initial moisture and chemical analyses. The litterbags were set in the field one
day after transplanting the rice seedlings. The fine-meshed litterbags had a mesh size of
20 μm × 20 μm and allowed access of microbes and part of the microfauna (e.g., fungi, bacteria,
protozoa, micro-nematodes.; henceforth referred to as ‘microbial decomposition’). The coarse-
meshed bags had a mesh size of 5 mm × 5 mm and allowed access of most of the invertebrate
groups [48]. The litter mass losses in our fine-meshed bags represented microbial driven
decomposition, since microarthropods show comparatively low abundances in flooded rice
agriculture [41] and therefore are assumed to have negligible influence on the decomposition
process [38, 40]. Litterbags were retrieved after 25 days, 50 days and 75 days of exposure in the
field. The two types of litterbags were arranged pair-wise on the soil surface with a maximum
spacing of 2 cm between bags, with three replicates of one fine-meshed and one coarse-meshed
litterbag per block per treatment (management practice) per retrieval time (total number of
bags: 450). The litterbag pairs were randomly spread within the fields. After retrieval of the
bags, soil particles, roots, and other alien plant material adhering to the straw were removed.
The cleaned straw was dried at 60°C for at least three days and weighed to the nearest centi-
gram to calculate litter mass losses. The C and N contents of the original straw as well as
retrieved straw from each litterbag were determined using an Elementar Vario EL element ana-
lyser (Elementar Analysengeräte GmbH, Hanau, Germany).

Soil invertebrates—Sampling and level of identification. Soil invertebrates were sampled
from all 25 plots. The field sampling was carried out at 25 and 75 days after the start of the lit-
terbag experiment. On each date, five soil core subsamples (approx. Ø 2 cm, 10 cm depth) were
taken per plot for the extraction of nematodes following a modified Cobb’s decanting and siev-
ing method [49]. The nematodes were identified to genus level and assigned to feeding groups
[50]. For the mesofauna, two soil cores (approx. Ø 5 cm, 10 cm depth) were taken. Microar-
thropods were extracted using a MacFadyen high-gradient extractor [51], and were sorted,
counted and identified to suborder or family level. The second mesofauna soil core sample was
manually sieved and decanted for the extraction of Enchytraeidae (potworms), which were sus-
pended in 70% ethanol and counted. Additional cores (Ø 5 cm, 10 cm depth) were used for the
analyses of abiotic soil parameters.
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Aquatic invertebrates—Sampling and level of identification. Aquatic meso- and micro-
fauna were taken from all 25 plots using dip nets (Ø 20 cm) of 0.8 mmmesh size. Sampling
was carried out at the middle of the rice cycle (50 days after the start of the experiment) with a
single sweep of 5 m length taken along the middle of each plot. The sampled invertebrates were
directly transferred to 70% ethanol, sorted and identified to family or order level. We use the
term “lineage”, which refers to phylogenetic groups differing in their taxonomic hierarchy in
the remainder of the text, because soil and aquatic invertebrates were determined to different
taxonomic levels.

Data analyses
A general linear mixed model (GLMM) Type III sum of squares (procedure MIXED, SAS 9.2)
was used to analyze litter-, C- and N mass loss as well as the relative contents of C and N (split-
split-plot ANOVA) in relation to ‘treatment’ (crop residue management method; 5 levels
within main plot), ‘time’ (retrieval time of litterbags; 3 levels within sub plot), and ‘mesh’ (mesh
size of litterbags; 2 levels within sub-sub plot) as well as their interactions. The factors ‘block’
(5 levels within main plot) and ‘replicate’ (3 levels within sub plot) were considered random.
Soil fauna data (split-plot ANOVA) were analyzed according to ‘treatment’ and ‘time’ (soil
core sampling dates; 2 levels within sub plot), and also including ‘block’ as a random factor.
The aquatic fauna (one-way ANOVA) was analyzed in a similar way, but excluding the factor
‘time’. Post hoc Tukey’s HSD tests were carried out to reveal significant differences between the
respective factor levels within factors.

For analyses of community structure, average values of the two sampling dates for lineages
of soil invertebrates were calculated. For comparison between sampling methods (soil core vs.
dip net), abundances of the lineages were standardized using z-transformation. To evaluate
relations between abundances of the lineages and the management methods (‘treatment’) a
redundancy analysis—RDA [52, 53] was carried out using R 2.1.4.2., package vegan [54]. We
used this specific multivariate method, which requires linear relationships between lineages as
well as between assemblages and environmental variables (Euclidean metric), because of the
homogeneity in our community dataset and the short environmental gradient [55, 56].
According to Lepš and Šmilauer [57] the use of linear methods is appropriate, if the longest
gradient, calculated using DCA/DCCA, is smaller than 3; in our dataset the longest gradient
was 0.8.

Analyses of co-variance (ANCOVA) were used to analyze the relationships between litter
mass losses and selected aquatic and soil-dwelling lineages including the same fixed and ran-
dom factors as in the above described ANOVAs on litter mass losses. Lineages were included
successively as covariates to reveal linear relationships of variances. Combining all independent
and measured variables from our experiment, we used structural equation models (SEM) to
test for direct and indirect interaction effects between observed endogenous variables (= inde-
pendent variables) and exogenous predictor variables (= fixed factors).

Results

Rice straw decomposition
The mean loss of litter mass in coarse-meshed litterbags was higher than in the fine-meshed
bags (84 ± 0.8% vs. 75 ± 0.8% (overall mean across all treatments and retrieval times ± SE)
respectively; Table 1). All tested factors as well as their two-way interactions showed highly sig-
nificant effects on litter mass loss (Table 1). Mesh size had a significant effect on litter mass loss
on all retrieval dates (Table 1, S3A Fig). The mean percent litter mass loss was lower from the
coarse-meshed bags (Fig 1A) retrieved after 25 days (Fig 2A) in plots with straw scattered on
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the surface of the field (treatment Ssc) compared to the other treatments. In both the fine- and
coarse-meshed bags, retrieved later in the rice cycle, the mass loss of rice straw litter was similar
across all five treatments (Fig 2A).

Except for the treatment × time interaction, N content of the retrieved rice straw litter was
also affected by all tested factors and their two-way interactions (Table 1). The same applies to
C contents, except that there were no significant effects ofmesh and the treatment x mesh inter-
action (Table 1). Similar to the total litter mass loss, N and C contents were lowest in the Ssc-
plots (Fig 1B and 1C). Furthermore, the difference of C contents between Ssc and the other
four treatments was largest for straw in litterbags retrieved after 25 days (Fig 2C). Whereas C
and N contents of straw increased with time, C/N ratios decreased (Table A in S1 File, S1B
Fig). This accounts for the relatively slower loss of N compared to C during decomposition.

There was a higher increase in N content over time in coarse-meshed compared to fine-
meshed litterbags, but a higher increase in C content over time in fine-meshed bags (S3B Fig
and S3C Fig). C/N ratios also followed this pattern, with higher values for straw in the fine-
meshed compared to coarse-meshed bags (S1A Fig). When comparing the mass losses of C
and N from rice straw litter retrieved from the five treatments, similar patterns emerged as for
litter mass loss and relative C and N contents: firstly, there were no differences within fine-
meshed bags; secondly, C and N mass loss were lower in coarse-meshed bags of treatment Ssc
compared to the other four treatments; and thirdly, towards the end of the season differences
between the treatments were negligible (Table B in S1 File, S4 Fig).

Rice yield
Rice yields were affected by crop residue management practices; minimum yields were
obtained from fields where the rice straw was scattered on the soil surface, but this was not sig-
nificantly different from the control plots (F4,16 = 3.6, P = 0.29; Fig 3).

Soil and aquatic invertebrates
Crop residue treatment significantly affected the abundances of selected aquatic lineages as
well as the sum of all lineages (aquatic + soil) (Table 2) with the highest abundances recorded
at fields with straw amendment (treatments Ssc and Smi; Fig 4). There was no significant treat-
ment effect on functional groups of soil invertebrates alone (Table C in S1 File). However,

Table 1. The effects of ‘treatment’, ‘time’ and ‘mesh’ and their interactions on litter mass loss of rice straw and the N and C contents of the
retrieved straw using a GLMM type III sum of squares. Significant effects are indicated in bold font.

Factors Litter mass loss (%) N content (%) C content (%)

Df F P Df F P Df F P

treatment 4,16 6.31 0.003 4,16 3.00 0.05 4,16 23.5 < .0001

time 2,187 2053 < .0001 2,187 579.72 < .0001 2,187 562 < .0001

mesh 1,206 652 < .0001 1,206 266.43 < .0001 1,206 0.01 0.91

treatment × time 8,187 8.47 < .0001 8,187 1.52 0.15 8,187 4.56 < .0001

treatment × mesh 4,206 7.78 < .0001 4,206 11.99 < .0001 4,206 0.65 0.63

mesh × time 2,206 61.5 < .0001 2,206 24.75 < .0001 2,206 36.2 < .0001

treatment × mesh × time 8,206 1.27 0.26 8,206 1.18 0.31 8,206 2.23 0.03

Factor ‘treatment’ represents the five different management practices (Asc, Ami, Ssc, Smi, Ctr; for abbreviations see Fig 1), the factor ‘time’ is the effect

of the three different time periods for which the bags were left in the fields (25d, 50d, 75d), and factor ‘mesh’ the two mesh sizes (5 mm and 20 μm) used

in every plot. The model also includes the random effects of the factors ‘block’ and ‘replicate’; these two factors and their interactions are not shown.

doi:10.1371/journal.pone.0134402.t001

Effects of Crop Residue Management on Decomposition in Rice Fields

PLOS ONE | DOI:10.1371/journal.pone.0134402 July 30, 2015 6 / 19



Fig 1. Litter mass loss, C content, N content: mesh size × treatment. Percent litter mass loss (A), N
content (B) and C content (C) (means + standard error SE) of rice straw retrieved after the five treatments in
coarse-meshed (decomposition by invertebrates and microorganisms) and fine-meshed (decomposition by
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abundances were significantly different between the two sampling dates (S5C–S5G Fig). Most
mesofaunal lineages, like the Acari, were more abundant at the beginning of the rice cycle.
Fluctuations in nematode abundances varied between the feeding guilds: plant-feeding nema-
todes were most abundant in the beginning, but omnivorous nematodes were most abundant
towards the end of the rice cycle. There was also a significant time effect on soil parameters
(soil pH & soil organic C content, Table C in S1 File, S5A Fig and S5B Fig), but there were no
significant treatment effects.

For the RDA the variable ‘treatment’ (categorical, 5 levels) was included. Based on the total
variance in the dataset, the first RDA axis explained 11% (Table D in S1 File Table; P = 0.005)
and represented mostly the ‘straw scattered’ treatment (Fig 5; see also Table E in S1 File—high-
est absolute value at RDA 1). The second axis accounted for 5% (Table D in S1 File; P = 0.15)
of the total variance and was related with the ‘straw mixed in’ treatment (Fig 5; see also Table E
in S1 File—highest absolute value at RDA 2). In total, 21% of the variance in the dataset was
explained by the four constrained RDA axes. Of this variance 52% was explained by RDA 1
and 24% by RDA 2 (Table D in S1 File). The factor treatment itself had a significant influence
on the abundances of aquatic and soil invertebrates (P = 0.02; all results of ANOVA permuta-
tion tests are given in Table F in S1 File). Finally, we found no significant relationships between
litter mass losses and fauna groups as analyses of co-variance and structural equation models
did not reveal direct or indirect interaction effects.

Discussion

Rice straw decomposition
The present study demonstrates the importance of invertebrate decomposers as ecosystem
engineers for sustainable agricultural practices in flooded rice production systems. The rate of
decomposition is known to be influenced by a variety of abiotic and biotic factors [3, 20].
According to Singh et al. [18] three main factors are important for efficient residue decomposi-
tion in rice-based cropping systems: (1) crop residue factors (like C/N ratios and lignin concen-
tration), (2) edaphic factors (soil properties like moisture content), and (3) management
factors. For a long-term sustainable improvement of management practices in paddy fields, it
is crucial to understand the ways in which these often interacting factors influence the decom-
position of rice straw by invertebrates.

In our experiment, invertebrates contributed to rice straw decomposition as demonstrated
by the higher losses of litter biomass from coarse-meshed litterbags compared to fine-meshed
ones. This pattern corroborates the results of several previous field studies (e.g. [10, 38]) and
supports our first hypothesis that invertebrates contribute to the mass loss of rice straw in
paddy fields. The few previous studies dealing with litter decomposition by invertebrates have
mostly been conducted in “true” farmers' rice fields, but not under the controlled and compara-
ble conditions as provided at our experimental sites. In general, it may be reasonably assumed
that the straw bundled in our litterbags created microsites with a comparably low redox poten-
tial that decreased microbial decomposition activity [58]. This implies that our decomposition
rates are likely underestimated and that microbial decomposition of dispersed straw is likely
higher than that measured in our litterbags. Nevertheless, microbial decomposition of organic

microorganisms) litterbags. Different letters above the bars indicate significant differences between means
(Tukey’s HSD, P� 0.05). Values of the original straw (= time 0d): N = 0.6%, C = 36.8%. Treatment
abbreviations: ‘Asc’—ash of burned rice straw scattered on the field, ‘Ami’—ash of burned rice straw mixed
into the soil, ‘Ssc’—rice straw scattered on the field, ‘Smi’—rice straw mixed into the soil, ‘Ctr’—control (no
ash or straw added).

doi:10.1371/journal.pone.0134402.g001
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Fig 2. Litter mass loss, C content, N content: treatment × time. Percent litter mass loss (A), N content (B)
and C content (C) (means + SE) of rice straw litter retrieved from the five treatments at three points in time.
Different letters above the bars indicate significant differences between means (Tukey’s HSD, P� 0.05).
Values of the original straw (= time 0d): N = 0.6%, C = 36.8%. For abbreviations see Fig 1.

doi:10.1371/journal.pone.0134402.g002
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matter is less efficient under the anaerobic conditions (e.g. [58]) prevalent in flooded rice fields.
In such environments, invertebrate decomposers will ensure sufficient nutrient precipitation
from plant residues.

One important step during invertebrate-driven decomposition is straw shredding, which
increases the surface area of the rice straw, and therefore the residue-soil contact, and creates a
more stable and favorable environment for microbial decomposition [18, 59]. Residue incorpo-
ration enhances this effect [18] as is reflected in our results: Litter decomposition with inverte-
brates (litter mass loss in coarse-meshed litterbags) was significantly faster in fields with rice
straw incorporated into the soil compared to fields with rice straw scattered on the field surface.
No significant response of solely microbial decomposition (litter mass loss in fine-meshed
bags) on management practices was detectable, which indicates that management practices pri-
marily affect decomposition by invertebrates. The process of rice straw decomposition in pad-
dies can be divided into two phases with a rapid phase of decomposition at the beginning (due
to leaching and the presence of easily degradable organic C in fresh residues) followed by a
slower phase [60]. We found a similar pattern in our experiment (highest litter mass losses

Fig 3. Rice yields. Yields per ‘treatment’ calculated from an adjusted grain weight at 14%moisture content
(means + SE); different letters above the bars indicate significant differences between means (Tukey’s HSD,
P� 0.05). For abbreviations see Fig 1.

doi:10.1371/journal.pone.0134402.g003

Table 2. The effect of ‘treatment’ on selected aquatic fauna groups and the sum of all lineages using a GLMM type III sum of squares. Error df = 16;
significant effects are indicated in bold font.

Factor Annelida abundance (sqrt) Aquatic Nematoda abundance Cladocera abundance

Df F P Df F P Df F P

treatment 4 3.48 0.03 4 4.12 0.02 4 4.68 0.01

Coleoptera abundance Aquatic fauna abundance (sqrt) Abundance—all lineages (ln)

Df F P Df F P Df F P

treatment 4 7.70 0.001 4 4.64 0.01 4 5.09 0.01

Factor ‘treatment’ represents the five different management practices (Asc, Ami, Ssc, Smi, Ctr; for abbreviations see Fig 1). “Abundance—all lineages”

refers to the total numbers of aquatic and soil invertebrates. The model also includes the random effect of the factor ‘block’; which is not shown; ‘sqrt’—

data square root transformed, ‘ln’—data loge transformed.

doi:10.1371/journal.pone.0134402.t002
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Fig 4. Abundance of aquatic fauna. Abundances of aquatic fauna groups and all lineages per ‘treatment’ (number of individuals). Panel (E) shows the sum
of all aquatic fauna samples and panel (F) shows the total numbers of aquatic fauna together with soil fauna (means + SE); different letters above the bars
indicate significant differences between means (Tukey’s HSD, P� 0.05). For the number of annelids the post-hoc test revealed no significant differences in
means. For abbreviations see Fig 1.

doi:10.1371/journal.pone.0134402.g004
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Fig 5. RDA plot including all lineages. Euclidean distance biplot based on a redundancy analysis (RDA); fauna groups of aquatic and soil samples are
represented by their 4-letter-abbreviations (see below); arrows refer to the five levels of the environmental variable ‘treatment’; and site scores are shown
with different shapes and colors depending on their treatment affiliation. Axis 1 explains proportionally 11% (P� 0.01) of the variation in the dataset; Axis 2
accounts for 5% (n.s.) of the variation.Abbreviations of animal lineages: aquatic fauna: ACol—Coleoptera Imagos, Anis—Anisoptera Larvae, Anne—
Annelida, Brac—Brachycera Larvae, Cera—Ceratopogonidae Larvae, Chir—Chironomidae Larvae, Clad—Cladocera, Cole—Coleoptera Larvae, Cope—
Copepoda, Cori—Corixidae, Culi—Culicidae Larvae, divN—Nematocera Larvae (except for Chironomidae and Culicidae), Ephe—Ephemeroptera Larvae,
Moll—Mollusca, Nauc—Naucoridae, Nema—Nematoda, Noto—Notonectidae, Ostr—Ostracoda, Plec—Plecoptera Larvae, Zygo—Zygoptera Larvae; soil
mesofauna: Acar—Acari, Ench—Enchytraeidae, Rest—remaining (not specified) invertebrates from soil samples; soil nematodes: Acro—Acrobeles spp.,
Ceph—Cephalobus spp., Pana—Panagrolaimus spp., Plet—Plectus spp. (all bacterial-feeding), Aphe—Aphelenchoides spp. (hyphal-feeding), Dity—
Ditylenchus spp. (plant-associated), Heli—Helicotylenchus spp., Hirs—Hirshamanniella spp., Long—Longidorus spp., Prat—Pratylenchus spp. (all plant-
feeding), Dory—Dorylaimus spp., Eudo—Eudorylaimus spp., Prod—Prodorylaimus spp. (all omnivorous), Mono—Monochus spp. (predator).

doi:10.1371/journal.pone.0134402.g005
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after 25 days of incubation), which supports our fourth hypothesis that the abundances of
functional groups of invertebrates and their relative contribution to decomposition vary over
time with stronger effects at the beginning of the season. It may also explain why differences in
litter mass losses between management methods leveled off towards the end of the rice cycle.

It is known that decomposition is related to the C and N contents of plant residues [61]. At
the very beginning of the decomposition process, a strong decrease in relative C content due to
mineralization processes by microorganisms is common [62]. However, C and N contents in
the rice straw litter steadily increased during the time of our experiment which was most likely
due to a high leaching of other soluble components, like silicon and potassium [63, 64]. Klotz-
bücher et al. [46] showed that rice straw from the Laguna region in the Philippines (which we
used in our litterbags) has particularly high silicon concentrations, which can amount to nearly
five percent of total rice straw dry mass. The reduction of silicon is very fast in paddy fields
resulting in higher silicon losses during decomposition compared to C and N mass loss. We
found similar changes in C concentration of straw retrieved from both litterbag types which
suggests a primarily microbial-driven C-breakdown. In contrast, N contents in the straw dif-
fered between fine- and coarse-meshed litterbags and reflected the patterns of the above
described litter mass losses: No differences between treatments in straw from fine-meshed bags
and generally higher N contents in straw from coarse-meshed bags with lowest values in fields
with Ssc treatment. Higher N concentration in the litter may be due to higher fungal biomass
[65] which would increase N concentrations creating more attractive conditions for detriti-
vores. This may explain the higher litter mass losses in bags where they had access. This idea is
supported by the results of several studies (e.g. [65, 66, 67]) which have reported a positive cor-
relation between decomposition rates and the N contents of plant materials.

Although rice straw is a low-quality resource for decomposers (see Introduction), decompo-
sition rates in rice paddies are rather high. Therefore, N content of the litter is not the only
important determinant of litter decomposition rates in wet-rice agriculture. Tian et al. [61]
reported that the role of soil fauna is relatively greater in the decomposition of low-quality lit-
ter: High C/N ratios as well as high lignin and polyphenol contents decrease the ability of
microorganisms to decompose straw. Microbial-driven decomposition is additionally slowed
by the anaerobic conditions of flooded rice fields. In fields with ash amendment and with straw
mixed into the soil, a lower availability of decomposable plant material in the aquatic phase
(where litterbags were set-out) could have led our litterbags to behave as “decomposer baits”
leading to a faster colonization of the litterbags by detritivores at the beginning of the experi-
ment. This assumption is supported by the convergence in the loss of rice litter for all five treat-
ments towards the end of the season. In contrast, C and N contents maintained lower levels in
the litterbag straw of fields where the rice straw was scattered on the soil surface.

Invertebrates
Several studies have demonstrated that aquatic invertebrates in rice fields cover the entire spec-
trum of the freshwater fauna ([36] and references therein). The decomposer fauna in tropical
soils consists of morphologically and behaviorally diverse lineages [4] where macro-inverte-
brates mainly contribute to litter decomposition by burying and shredding of plant material.
The positive effects of straw on invertebrate abundances with no effect on the diversity of
aquatic or soil invertebrates in the present study is consistent with the findings of Schneider
et al. [43] and Hagen et al. [42]. Although the differences between management methods were
statistically significant only for the aquatic lineages, the abundances of soil-dwelling lineages
showed similar trends in our study. Abundances were consistently highest at plots where straw
was scattered on the field surface followed by the fields where the straw was incorporated into

Effects of Crop Residue Management on Decomposition in Rice Fields

PLOS ONE | DOI:10.1371/journal.pone.0134402 July 30, 2015 13 / 19



the soil. This positive reaction of meso- and macro-invertebrates to straw scattering supports
our third hypothesis that the mode of residue application to fields will favor different groups of
invertebrates. This is further supported by the findings of Friebe and Henke [44] and Reddy
et al. [68], who recorded higher faunal abundances in fields with lower tillage intensity. In
contrast, Singh et al. [18] suggested that the incorporation of crop residues into the soil
increased populations of all types of macro- and microorganisms in rice fields in India.
Whether incorporated or not, the use of rice straw as a fertilizer in irrigated rice cropping sys-
tems is beneficial for aquatic and soil invertebrates. We found no positive correlation between
the abundance of meso-invertebrates and the decomposition rate. However, such a relationship
has been reported by Lekha et al. [1]. Moreover, litter mass losses and the abundances of
aquatic fauna showed contrasting patterns in their treatment responses. More long-term exper-
iments will be essential to reveal the relations of invertebrates and their decomposition activity.

Even though the abundance of invertebrates was highest at plots with straw scattered on the
field surface, rice plants at these plots produced the lowest yields. Different and partly contra-
dicting short-term effects of practices of crop residue management on rice yields underline the
fact that such processes may not manifest within one rice cycle. Xu et al. [69] found no effect of
straw amendment on yields in the first season during their experiments, regardless of whether
the fields were tilled or not. Long-term experiments by Samra et al. [28], Singh et al. [70] and
Thuy et al. [31] also revealed that several crop cycles with continuous residue application are
necessary to gain the maximum benefits of straw incorporation.

Despite explaining just a small amount of variance, multivariate analyses indicated that
the community composition and abundances of invertebrate lineages differed significantly
between our five treatments (straw or ash scattered or incorporated, and control). The graphi-
cal illustration of the RDA results revealed a clear separation and clustering of plots with straw
treatments. These two straw management methods accounted for the highest amount of varia-
tion among all five treatments. Furthermore, their treatment arrows are nearly orthogonal to
each other indicating a strong separation of the invertebrate assemblages at these sites. The
positioning of the lineages relative to the straw-treatment-arrows shows no ecologically mean-
ingful pattern. However, there are still some obvious trends. Some lineages, like nematodes,
cluster primarily in the direction of the arrow representing the straw incorporated manage-
ment method, while many aquatic lineages seem to favor fields with straw scattered onto the
soil surface. Half of these aquatic lineages comprise mainly small plant-, detritus- and bacte-
rial-feeding or omnivorous lineage types (like e.g. Cladocera or larvae of Culicidae and Brachy-
cera); the other half consists of their predators (Naucoridae, Anisoptera larvae etc.). Thus,
straw on the soil surface of rice fields seems to attract small aquatic invertebrates as it provides
energetic resources and refuge from predators [71]; this in turn also attracts predatory insects
due to an increased prey abundance [42].

Studies like ours will help to unravel the complex mechanisms and interacting effects of fau-
nal abundance, decomposer activity and strategies of crop residue management in tropical
flooded rice ecosystems. The next step is the synchronization of plant demand with N fertiliza-
tion and nutrient release from rice straw residues to reduce the amount of artificial fertilizers
that are applied in modern agriculture [20, 31–33], and additionally, to decrease rice straw
burning and its subsequent contribution to climate change through air pollutants [72–74].

Conclusions
Linking farmers’ interests with a sustainable improvement of agricultural practices in compli-
ance with nature conservation is one of the future challenges to stabilize or even increase yields
while preserving biodiversity and natural landscape structures. In our study, we demonstrated
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that invertebrate decomposers contribute substantially to decomposition processes in flooded
rice agriculture indicating potential effects on soil fertility and site productivity. Sustainable
crop residue management strategies should consider invertebrates when using straw to
improve soil conditions. We showed that altering residue management practices prior to crop-
ping significantly influences the litter decomposing activity of invertebrates during the first rice
cycle, but we found no effects on microbial-driven decomposition rates. Increasing the rice
straw availability in paddy fields, during the aquatic phase as well as in the soil, positively
affected the abundances of aquatic and soil fauna groups. Future long-term studies should par-
ticularly focus on revealing linkages between litter decomposition by invertebrates and their
abundances to evaluate in more detail how crop residue management practices can contribute
to the maintenance of ecosystem services provided by invertebrate decomposers in flooded rice
ecosystems.

Supporting Information
S1 Fig. C/N ratios: mesh size × time; treatment × time; mesh size × treatment. Comparison
of C/N ratios (means + SE) of rice straw litter in (A) coarse- and fine-meshed litterbags at the
three retrieval times, (B) bags under the five treatments at the three retrieval times, and (C)
coarse- and fine-meshed bags under the five treatments. Different letters above the bars indi-
cate significant differences between means (Tukey’s HSD, P� 0.05). Asterisks in graph (A)
indicate significant differences between the two mesh sizes at one point in time (not between
times); P� 0.001���. Value of the original straw (= time 0d): C/N = 61.5. For abbreviations see
Fig 1.
(TIF)

S2 Fig. Experimental setup. Experimental setup; treatment abbreviations: ‘Asc’—ash of
burned rice straw scattered on the field, ‘Ami’—ash of burned rice straw mixed in the soil,
‘Ssc’—rice straw scattered on the field, ‘Smi’—rice straw mixed in the soil, ‘Ctr’—control (no
ash or straw added).
(TIF)

S3 Fig. Litter mass loss, N and C content: mesh size × time. Percent litter mass loss (A), N
content (B) and C content (C) (means + SE) of rice straw litter in coarse- and fine-meshed bags
retrieved at three points in time. Asterisks indicate significant differences between the two
mesh sizes at one point in time (not between times); P� 0.001���. Values of the original straw
(= time 0d): N = 0.6%, C = 36.8%.
(TIF)

S4 Fig. C & Nmass loss: mesh size × time; treatment × time; mesh size × treatment. C-/ N
mass loss (g) (means + SE) of rice straw litter in (A/D) coarse- and fine-meshed litterbags at
the three retrieval times, (B/E) bags under the five treatments at the three retrieval times, and
(C/F) coarse- and fine-meshed bags under the five treatments. Different letters above the bars
indicate significant differences between means (Tukey’s HSD, P� 0.05). Asterisks in graphs
(A) and (D) indicate significant differences between the two mesh sizes at one point in time
(not between times; P� 0.001���). Values of the original straw (= time 0d): N = 0.06 g,
C = 3.44 g. For abbreviations see Fig 1.
(TIF)

S5 Fig. Changes of soil traits and soil fauna abundances. Soil traits: pH (A) and organic C
content (B); average numbers of selected soil fauna groups (C-G) per ‘time’; P� 0.05�,
P� 0.01��, P� 0.001���. Abundances of mesofauna (C & D) are given per m2 soil area and
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abundances of soil nematodes (E-G) are given per g soil dry weight.
(TIF)

S1 File. Table A in S1 File. The effects of ‘treatment’, ‘time’, ‘mesh’ and their interactions on C/
N ratios in the rice straw litter using a GLMM type III sum of squares. Significant effects are
indicated in bold font. Table B in S1 File. The effects of ‘treatment’, ‘time’, ‘mesh’ and their
interactions on rice straw N and C mass loss using a GLMM type III sum of squares. Significant
effects are indicated in bold font. Table C in S1 File. The effects of ‘treatment’, ‘time’ and their
interaction on soil traits (pH, organic C content) and selected soil fauna groups using a GLMM
type III sum of squares. Significant effects are indicated in bold font. Table D in S1 File. Eigen-
values of the four RDA axes and their contribution to the total variance, as well as accumulated
constrained (‘Acc.’) eigenvalues and contribution to the accumulated variation of the four
RDA axes from the community analyses of aquatic and soil fauna abundances. Table E in S1
File. Centroids for factor constraints of the first two RDA axes. Highest absolute values are
indicated in bold font. Table F in S1 File. ANOVA table of permutation tests for the four RDA
axes and the constraining environmental variable ‘treatment’; ‘Perm’ = number of permuta-
tions. Significant effects are indicated in bold font.
(DOCX)

S2 File. Raw dataset including all original unchanged data used for the analyses in this
study.
(XLSX)
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